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ABSTRACT

In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is
proposed to examine the interaction between the planetary—scale waves and the localized synoptic—scale ed-
dies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter
equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity
and phase under the forcing of localized synoptic—scale eddies. The numerical solutions of these equations
predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the
synoptic—scale eddies, only when the high—frequency eddies themselves have a moderate parameter match
they can near resonantly enhance a quasi—stationary large—amplitude split flow. The instantaneous total
streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic—scale
waves) is found to be very similar to the observed Berggren—type blocking on the weather map(Berggren et
al. 1949). The role of synoptic—scale eddies is to increase the amplitude of large—scale dipole anomaly flow,
and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system
can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why
and how the synoptic—scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly
found that during the prevalence of the vortex pair block the synoptic—scale eddies are split into two
branches around the vortex pair block due to the feedback of amplified dipole block.
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1. Introduction

In the mid—high latitudes, “ blocking flow” is an important part of the low—frequency va-
riability of the atmospheric circulation. Owing to its longevity and large amplitude, a block-
ing flow configuration can usually cause prolonged anomalous weather situations over cer-
tain extratropical regions, Therefore, it has been a primary interest of many synoptic and
dynamical meteorologists. In the past decades, the interaction of planetary waves with migra-
tory, synoptic—scale waves has been clearly recognized to be an important mechanism for the
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formation and maintenance of blocking (Berggren et al, 1949; Green, 1977; llari and
Marshall, 1983; Dole, 1986 Holopainen and Fortelius, 1987; Colucci, 1985, 1987; Crum and
Stevens, 1988; Nakamura et al., 1990, 1993, 1997). In the interaction process, the high fre-
quency synoptic—scale waves exert a positive feedback that acts to reinforce the blocking
mainly through vorticity fluxes (Green, 1977; Hansen and Chen, 1982; Shutts, 1986; Tsou and
Smith, 1990; Nakamura et al., 1990, 1997; Lupo and Smith, 1995). The viewpoint has drawn
strong support from numerical experiments (Shutts, 1983; Haines and Marshall, 1987;
Vautard et al., 1988a.b).

Upon observation, Colucci (1985, 1987) had shown that the formation of atmospheric
blocking may be understood as a response of the planetary waves to synoptic—scale
perturbations, which act as sources of energy and vorticity for the incipient blocks,
Furthermore, she suggested that whether a blocking structure occurs and what type of block-
ing structure occurs may depend critically upon the amplitude of existing planetary waves and
the phase of the waves relative to the synoptic—scale eddies. These observational studies raise
very interesting and important questions: How do incipient planetary—scale blocking waves
change during the passage of imbedded synoptic—scale disturbances and how are the
synoptic—scale waves modulated by the amplified planetary blocking wave? These problems
need to be further explored theoretically. In this theoretical study, we try to investigate these
problems. It should be pointed out that because the blocking usually possesses barotropic
structure and the synoptic—scale waves become less baroclinic as they approach the block
(Nakamura and Wallace, 1993), as a simplest case we can use an equivalent barotropic model
to examine our problems (Shutts 1983; Nakamura et al. 1997). In this case, the relevant dy-
namics of atmospheric blocking which arises due to the interaction of the synoptic—scale
waves with the planetary—scale environment can be elucidated clearly,

In the present work, an envelope Rossby soliton (slowly modulated wave) is regarded as
an incipient planetary—scale blocking wave when it encounters the synoptic—scale waves (ed-
dies) upstream (or external forcing) (Luo, 1999b; 2000). Using a perturbation expansion
method, a forced nonlinear Schroedinger equation can be derived to describe the interaction
between an incipient planetary—scale blocking wave and the synoptic—scale waves upstream,
In order to simplify our problem, we may assume that both antecedent planetary—scale waves
and synoptic—scale waves exist in a weak background flow before a high—amplitude blocking
anomaly 1s established, while the synoptic—scale eddies are assumed to consist of two Rossby
waves with the time scales less than one week even though they are rather crude in compari-
son with the observations, However, as a highly simplified, theoretical problem we can do so.
For our purpose, the difference between the zonal wavenumbers of two Rossby waves less
than one week is assuined to be small enough so that the zonal wavenumber and frequency of
the planetary—scale eddy vorticity forcing induced by these synoptic—scale Rossby waves are
close to that of the studied incipient planetary—scale blocking wave. In this case, these
synoptic—scale waves upstream can near resonantly force the incipient planetary—scale block-
ing wave. As demonstrated by Pierrehumbert and Malguzzi (1984) and Colucci (1985), block-
ing may be understood as a near—resonant response of the planetary waves to synoptic—scale
disturbances. Based on these considerations, a force nonlinear Schroedinger equation can be
derived to describe the planetary blocking wave modulation caused by the synoptic—scale ed-
dies. When the planetary—scale blocking wave is amplified, the interaction between the ampli-
fied planetary—scale blocking wave and synoptic—scale waves will induce the modulation of
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the synoptic—scale waves themselves. This idea can basically reflect the planetary—to—
synoptic scale interaction during the life cycles of observed blocking events (Colucci, 1985;
Nakamura et al., 1990, 1993, 1997).

The present paper is organized as follows: In Section 2 we present the derivation of a
forced nonlinear Schroedinger equation. The horizontal structure of the free dipole envelope
soliton is presented in Section 3. Section 4 presents the main features of the planetary—scale
dipole envelope Rossby soliton and the synoptic—scale eddies during their interaction. The
conclusion and discussions are given in Section 5,

2. The barotropic model and the governing equation

Many investigators had confirmed that the strong interaction between planetary— and
synoptic—scale waves took place during the life cycles of blockings (Berggren et al., 1949; Rex,
1950; Green, 1977; Colucci, 1985, 1987: Crum and Stevens, 1988; Neilley, 1990; Nakamura et
al., 1990, 1993, 1997). Strictly speaking, although the synoptic—scale waves are purely
baroclinic, the conversion of their kinetic energy to planetary wave, however. is barotropic
(Frisius et al. 1998). In order to clearly clarify the interaction, both planetary blocking wave
and synoptic—scale waves are assumed to be purely barotropic. This assumption is acceptable
for studying the physical mechanism of blocking events associated with synoptic—scale waves,
Unfortunately, no theoretical work is focused on investigating how the planetary blocking
wave changes during the passage of imbedded synoptic—scale disturbances upstream and how
the synoptic—scale waves are modulated. In the present paper, we will use the equivalent
barotropic model (McWilliams, 1980; Shutts, 1983) to investigate this problem.

The nondimensional, nondissipative and equivalent barotropic vorticity equations des-
cribing the coupling between the planetary—scale waves and synoptic—scale eddies having a
constant background westerly wind can be easily written as (Luo, 1999b)

‘;‘f - — IOV, (1)

P

(& + W2 (VY= B+ S 0+ (B+ F)
(G + U V= B+ I+ (Bt FLT)‘(;‘_”Y! — JW .= I VY. ()
where the atmospheric streamfunction ¥, = - uy -+ y+ ' has been decomposed into three
parts: basic flow u, planetary—scale part |y and synoptic—scale part 1, and the other notation
can be found in Shutts (1983), In the above—mentioned two equations, the eddy vorticity forc-
ing — J(t//’,vzxp’) has been decomposed into two parts: planetary—scale component
— JOy Cvﬂp’),) and synoptic—scale component — J(xp’,vzw”)s. Strictly speaking, this de-
composition is rather crude, but basically admissible for interpreting the physical mechanism
of the planetary—to—synoptic scale interaction during the life cycles of blockings. It is also
easy to find that — J(’, v’ "), should be placed in Eq.(1), while — J()". /> ¢")¢ should be

placed in Eq. (2). Note that — J(w’,vzlp’),) could be naturally regarded as a source of energy
and vorticity for planetary blocking waves (Shutts, 1983: Colucci, 1985; Vautard et al.,
1988a.b; Nakamura et al., 1990, 1993, 1997),

The planetary—scale flow is contained within a beta—channel on whose boundaries

Y_o y=0. Ly 3)

Ox
while the zonally averaged part of the streamfunction, ¥ (yv,t), must satisfy (Pedlosky, 1979;
Luo, 1999a)
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where Ly is the width of the beta~channel.
Generally speaking, in previous studies the term — J(J’, V2¢’)P which arises from the

synoptic—scale waves is usually specified as an external forcing (Pierrehumbert and Malguzzi,
1984; Nakamura et al., 1997), but this treatment is unable to investigate how the migratory,
synoptic—scale eddies are modulated by the amplified blocking wave. As pointed out by
Nakamura et al. (1997), the synoptic—scale eddies themselves are modulated as the blocking
strengthens due to the forcing of the synoptic—scale waves. So far, no theoretical study is
presented to describe such a interaction process. In this paper, we present a new, simple theo-
retical model to deal with this problem. For some of blocking cases, the relative vorticity
advection term,— J(w,vzw) of the planetary—scale waves is almost an order of magnitude

larger than that of the planetary—scale eddy forcing term, — J(W’,Vzlfl’),,, induced by the
synoptic—scale waves upstream (Holopainen and Fortelius 1987). In this case, if
.I(l//,vzdz) has an order of ¢°, then — JO, vzl//’),, should have an order of ¢°. Therefore, if
the planetary—scale blocking wave can be expanded as Y= &y, + &y, + -, then the
synoptic—scale waves should have the expansion y'= &' *y; + & ¢, + «= In addition, to
make the slowly varying envelope amplitude equation of the planetary—scale blocking wave
include the planetary—scale eddy vorticity forcing term, the expansion y'= e ? '//; 4+ 7 x//’2

+ e+« for the synoptic—scale waves also should be made when the expansion
y=ap,+ 821//1 + --« is made for the planetary—scale waves. In other words, if y ' = gt ? 1/ 1

+¢& 2 l[/'2 + --- is allowed, the envelope amplitude equation of the blocking wave, at the order

O(&*). can include the forcing term of — ./(l/I; ,sz,b; )p. It should be pointed out that for
some of blocking cases, the relative vorticity advection term of the planetary—scale waves
sometimes has the same order as that of the observed planetary—scale eddy forcing term
(Nakamura et al., 1997). Though our treatment here is inappropriate for these blocking cases.
the basic results obtained from our model are acceptable. This can be confirmed by using the
three wave quasi—resonant interaction theory, which is not presented in the paper. When both
the expansions Y= e+ &, + +==and y’'=¢ Y, + ¢ *y,+ - are substituted into
Eq.(2), the following equations can be obtained as

o+ wlNS Y~ R mi =0 (5)
Ot Ox ! ! x )
AT R B R =~ I, - ST ©)

where , and i, denote the first— and second—order synoptic—scale flows of the

synoptic—scale waves, respectively.
Note that Eq. (5) is a linear equation, which describes the first—order synoptic—scale flow
that is not associated with the amplified planetary—scale wave ¥, governed by a nonlinear

Schroedinger equation. However, the second—order synoptic—scale flow w; 1s associated with
the amplified planetary—scale blocking wave i, through the interaction with the
synoptic—scale waves 11/,. It is interesting to note that when the planetary—scale blocking

wave Y, is amplified by the synoptic—scale waves 1//, , the modulation of the synoptic—
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scale waves ¥’ induced by the amplified planetary—scale wave is mainly described by lﬁ; . The

modulation part x//z does not strongly influence the amplification of the planetary—scale

blocking wave because its zonal wavelength is too short in comparison with that of the plan-
etary—scale blocking wave. Although Shutts (1983) and Haines and Marshall (1987) have
shown that migrating high—frequency fluctuations in a barotropic model are modulated and
deformed by diffluent flows associated with a blocking—like or modon—like basic state, their
numerical experiments, however, cannot provide a clear description of how the
planetary—scale blocking wave changes during the passage of imbedded synoptic—scale dis-
turbances. There is also a similar defect for the previous analytical studies (Malguzzi, 1993),
but this defect can be avoided in our theoretical model.

In theoretical and numerical studies, we should consider the exact expression of observed
synoptic—scale waves. However, it is very difficult to give in detail such an expression because
of their complexity. As a theoretical study, deriving the exact expression of the synoptic—scale
waves is unnecessary for the study of the physical mechanism of blocking events associated
with the synoptic—scale waves. This is because the complex synoptic—scale waves will cause a
great difficulty for the mathematical treatment in exploring the interaction between both the
planetary—scale blocking wave and the synoptic—scale waves. It is unfavorable for the under-
standing of the essence of the physical mechanism of blockings. In the present paper, as a

simplest case we may assume that the synoptic—scale wave w; consists of two Rossby waves

having the time scale less than one week, Without the loss of generality, the two Rossby waves
can be assumed to be of the form

W, = folexplitk, x— o, D]~ pexpli(k, x— (!)31)]}sin(%y)+ ce, (7
_ + Fu)k _ B+ Fudk,
where f’, (X) is the amplitude, m= — 21 w, = uk,— %*—Tl—l W, = uk,— L—;-li——;
Ly K - - K;

K;=ki+m’/4+ F k,=k,+ (= 1) Ak.|Ak|< < k,. X= ex, cc denotes the complex
conjugate of its preceding term, and p is an arbitrary constant. Note that the nondimensional
wavelength for the nth Rossby wave is Lx= 216.371cos(p, )/ n, which is identical to 276.371
x 10° cos(pqy )/ (nL), where L= 10° 1 is the horizontal characteristic scale.

When we choose Ly=35 (5000 km, the meridional wavelength in dimensional form),
F=1.0, n= 10, Ak= 0.75k, and u= 0.7, (7 th / s in the dimensional form), the periods of the
two Rossby waves at 55°N given in (7) correspond to nearly 6 and 5 days, respectively, It
should be pointed out that Ak= &, can be also chosen, but this choice does not influence the
results obtained in this paper. Moreover, following the definition of the synoptic—scale eddies
proposed by Mullen (1987) and Holopainen and Fortelius (1987), the two Rossby waves hav-
ing the time scale less than one weak described in (7) should be considered as the
synoptic—scale eddies. If the zonal wavenumber of the planetary—scale blocking wave is chos-
en to be 2, its zonal wavelength is nearly 5 times greater than the zonal wavelength of the
synoptic—scale waves in (7). When (7) is substituted into — J(l/!’,vzlll’), it is not difficult to
find that — J(w;, sz//;),,, only consists of planetary—scale component k, — k,, while

— JW, sz//)s, consists of synoptic—scale component k, + k,. The amplitude of the plan-
etary—scale component k,— k, is found to be nearly 10 times greater than that of
synoptic—scale component k, + k, for the parameters above. Therefore, — J(y’, Vzw’) is

dominated by planetary—scale component — J(’,, Vzl//’l )p. while the synoptic—scale
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component — J()’, V>§')s can be negligible. Following Yamagata (1980), Jeffrey and
Kawahara (1982), Taniuti and Nishihara (1983) and Hasegawa and Kodama(1995) we can in-
troduce the slowly varying coordinates

&= ex— Cgt), T= &1, 8)

2 2
where Cg= i— LEFOOH Fo k) i 10, and 3y= =~ 0.1'is the local
(kyy+ m + F) foL

Rossby number. The transform (8) we make here implies that the amplitude of the
planetary—scale blocking wave is slowly varying through the nonlinear interaction or the forc-
ing. The zonal scale of the slowly varying envelope amplitude is several (1 / ¢) times greater
than the scale of the carrier wave k. In the actual application the singular perturbation theory
is also correct even if the perturbation parameter is not rather small. This is because the
choice of ¢ does not strongly affect the obtained results.

In the real atmosphere, the blocking flows usually exhibit zonal wavenumbers 1, 2 and 3
(Colucci et al,, 1981). If Ly=5.0 is chosen (5000 km in the dimensional form, presented by
McWilliams, 1980 in his Fig.1), we can obtain Ly / Lx= 0.436~ 0.65 at 55°N for zonal
wavenumbers 2 and 3. It is natural to conclude that the long—wave approximation Ly / Lx
< < 1,0 (or k> 0) might be inappropriate for blocking systems having large meridional scale
for zonal wavenumbers 2 and 3. But for zonal wavenumber 1 the long wave approximation
can be crudely acceptable, However, in deriving a nonlinear Schroedinger equation, the
long—wave approximation is not required. It seems that the KdV soliton is only reasonable
for blocking events having a very long zonal scale (Butchart et al. 1989). On the other hand, it
should be pointed out that the isolated coherent structures obtained from the KdV Rossby
soliton model are nondispersive at all stages. In fact, the blocking during the mature stage can
be considered as a nondispersive wave, but during the onset and decay stages it is dispersive.
Therefore, the long—wave approximation distorts seriously the nature of blocking during the
onset and decay stages. This is why we try to study the dynamics of forced envelope Rossby
soliton.

If the solution to Eq.(1) can be expanded as

U= ey (EToxp 0 e, ETx 0+ ey ET x 0+ o ©)
then substitution of (9) into Eq.(1) yields

¢ ¢ 2 W)
O(e):  LW,)= (E+ Llﬂ')[v o )= Flp)l+ (B+ FDTZ 0, (10)
O ): LW ))= = JWo. Vo), an
o ~3 - N ~2
0G): LWy )= — (L (v 0= Fug)t 2= Cor s+ (&g iy oy
T CxCE ¢ cxoog”
5+ FE)%—F (- cgygg(v%pl — Py )+ S0 VU )+ S0 V)
oty
+ 0257
oy o Ny @ o U kY k= k) _
+ 55 évzlpo— Gyo 5—€V2d/l}— i1 p— ) - L mexp{i[2Akx—
(0w, — @, )tl}sin(my). (12)

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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For planetary—scale Rossby waves having dipole meridional structure, the solution to
(10) can be assumed to be of the form '

Vo= AT, 0explitkx— w)l+ cc, (13)

(B+ Fk 2

K+ m’*+ F 6.371lcos(p,)’
wavenumber of Rossby wave 2, and 4(£,T) is the complex envelope amplitude. It is clear to
find that as a first—order approximation of planetary—scale waves, ¥, satisfies a linear
Rossby wave equation. The observational study presented by Holopainen and Fortelius
(1987) has shown that to the leading order approximation the time—mean flow in their block-
ing case behaves as a “ free” stationary wave (Shutts, 1983). This indicates that the expansion
solution in (9) is correct if Y, has a blocking structure,

Using (12), the solution to Eq. (11) satisfying the boundary condition (4} can be obtained

where ¢, (y)= \/Zz; sin(my), o= uk— is the zonal

as
- 2y !
Y, = —141° X q,g,costn+ §)my+ &, (14)
n— 1

4k m _ 8
[, oy &= Loy,
Ly{p+ Fu— (u— CglF+ (n+ 5)'111“]} mld— (n+ E)']LJ’

where ¢, =

It is easy to note that in Eq. (12). the interaction between the synoptic—scale eddies
themselves induces planetary—scale eddy forcing component k, — k, = 2Ak. If ky— k| is
near that of planetary—scale wave, then the eddy forcing will near—resonantly force the plan-
etary—scale wave. A special case is that the zonal wavenumber A, — &, of the planetary—scale
eddy forcing is assumed to be the same as that of the studied planetary—scale wave, Without
the loss of generality, we can choose parameters Ly = 5, F= 1.0, n= 10, Ak= 0.75k, and u
= 0.7. For these parameters, we know that ©,— w, — @is small and k— 2Ak= O(¢).
Assuming k— 2Ak= ¢AK and w, — @, ~ o= ¢> AQ. and when (13) and (14) are substituted
into Eq. (12), the non—secularity condition yields

A A2
f%”—;-+ A L 514l a+ G expl— i(AKX+ AQT)]= 0, (15)
cE”

, , km >+ m —mnt <)V, g
[3m™+ Fy— k" Up+ Fu)k S— ,.—zu 2 M8

&+ m'+ F) K4 m*+ F
—[—:V_(kz + k) ky— k)mp
2 402+ m*+ F)
Once the solution of Eq.(15) can be obtained. the second—order synoptic—scale flow ¥/,
can be determined from Eq.(6) and expressed as

where A=

G= and X= ¢+ eCgt.

Y= — %Ql/ﬁj Afgexplillk, + Kx— (o, + o)t]}lp, sin(%ﬁy)-*' "l Sin(%zy)]

m 2 , ; . 3m . m

+ ZQZ\/L_y Afgexpliltk, + k)x— (o, + w)t]}[pzsm(Ty)-i— r, sm(Ey)]
in 2 ., . . 3m . m

+ EQ' \/L_v A" foexplilk, — Kx— (0, — w)lils, sm(——2 ¥+ hy sm(Ey)]
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- %QZ\/L%V A" pfoexplilk, — k)x— (0, — o)lis, sin(3—;1-y)+ hzsin(gl—y)], (16)

where the coefficients Q,, p,;. r;, s; and h,;(i= 1,2) in expression (16) are real and defined in
the Appendix.

It is easy to find from (15) and (16) that because the amplitude equation for 4 includes
the term /7, the planetary—scale blocking wave will be deformed during the passage of the
synoptic—scale waves upstream. In this process, the second—order flow w; of the
synoptic—scale waves can be induced through the interaction with the deformed
planetary—scale wave. This second—order flow xp/z reflects how the synoptic—scale waves are
modulated by the planetary—scale wave. Therefore, if the planetary wave for 4 can be ampli-
fied into a typical blocking, our model presented here can basically describe the interaction
between planetary— and synoptic— scale waves during the life cycles of blocking events
(Colucci 1985, 1987). It should be pointed out that the previous theoretical models cannot
describe this interaction (Malguzzi, 1993),

With the help of the transforms 4= B/ Yo and (=¢/ V27, Eq.(17) can be rewritten in
the form

CB BB+ YT fRexpl— (AKX + AQT)]= 0, (18)

e

oo

L
l N

-+

~
~
DO | —

Eq.(18) is a forced nonlinear Schroedinger (NLS) equation, which describes the
deformation of the planetary—scale wave caused by the synoptic—scale eddies. In a wide
parameter range both 4 and d are positive for planetary—scale Rossby waves. Therefore, for
the case without forcing this NLS equation, there exists an envelope soliton solution. General-
ly speaking, it is very difficult to obtain the exact solution of forced NLS equation, However,
if the forcing term is weak, the perturbed inverse scattering transform (PIST) method can be
applied to solving Eq.(18) (Hasegawa and Kodama, 1995).

If the solutions to Eq.(18) can be obtained with the help of both PIST method and
fourth—order Rung—Kutta method when f’, is specified as a known function, we can clearly
understand how the dipole envelope Rossby soliton (incipient block) is amplified by the
synoptic—scale waves and how the synoptic—scale waves are modulated by the amplified enve-
lope Rossby soliton. As the first step of our task we will give the horizontal structures of free
planetary—scale dipole envelope Rossby soliton and discuss the possibility of its application
to blocking events,

3. Analysis of the solutions and the horizontal structures of free planetary—scale dipole
envelope Rossby solitons

Under the condition without forcing, the envelope soliton solution to Eq. (18) can be ob-
tained as (Taniuti and Nishihara, 1983)

A= Aosech[/

0 . i . 2
2 Aoglexp(EOAOT), (19)
where A, is the value of 4 at (¢.T)= (0,0).

If one defines M, = ¢4, the streamfunction field of the dipole envelope Rossby soliton

can be expressed as
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o= — W+ B= — ay+ ahy+ OG)

—uy+ SAO\/L_zy_ sech[/% A Elsin(my explitkx— wt+ l(SAéT)]+ 0(*)+ ce

2

= — uy+ MO\/%) sech[/% My (x— Cgt)lsin(mylexplik(x— C 1)1+ 0(*)+ cc. (20)

where é= ¢(x— Cgt) and T= ¢’ t have been used,and C , = 0/ k— 5M(2) 7/ 2k).

It is not difficult to find from (19) and (20) that the envelope amplitude of the dipole
Rossby soliton for §(y, = — uy+ {) possesses an isolated coherent structure of sech—shape,
but cosk(x— C ,t) does not vanish, However, the streamfunction field of KdV Rossby
soliton only has a nondispersive isolated structure of sech’—shape because the long wave ap-
proximation Ly / Lx< < 1.0 (or k—0) is used (Malguzzi, 1993 and Malanotte-Rizzoli et
al., 1987; Butchart et al., 1989). The structure of the KdV Rossby soliton is solely determined
by the zonal scale of the sech’~shape. If the KdV Rossby soliton possesses a realistically
blocking structure, then the zonal scale of the sech’~shape amplitude should at least be the
scale of dipole blocking, This seems to be in contradiction with the assumption Ly / L x <
< 1.0 when Ly is sufficiently large (for example, Ly =5.0 in McWilliams, 1980). As pointed
out by Butchart et al. (1989), the isolated structure of the KdV Rossby soliton is mainly con-
fined in the narrower channel. However, there does not exist such a limitation for an envelope
Rossby soliton, This is because the envelope soliton (y = — uy+ () also possesses blocking
structure even if the zonal scale of the envelope amplitude 4 is very large even infinite (for this
case A is a constant, and the solution (9) reduces to a linear Rossby wave solution) so long as
A has a large amplitude state (Shutts, 1983). For example, in the resonant theory of blocking
proposed by Tung and Lindzen (1979), stationary blocking can be produced through in-
creasing wave amplitude under the resonant forcing of large—scale topography. Therefore, we
think that the KdV soliton theory of blocking proposed by Malguzzi (1993) and
Malanotte—Rizzoli et al. (1987) is only to consider the case for k—0in y
= gA(¢&, T)o, v)expli(kx— wt)]+ cc as the shear basic flow exists, while the linear theory of
blocking proposed by Tung and Lindzen (1979) is only to consider the case that A(E.T) be-
comes a constant. Thus, their theories are only special cases of the envelope Rossby soliton
theories studied here. Consequently, we can conclude that the envelope Rossby soliton pro-
posed here seems to be more reasonable for blocking events than the previous theories. On the
other hand, it should be pointed out that the derivation of nonlinear Schroedinger equation
has an implication that the zonal scale of the envelope amplitude is several times (1 / ¢) great-
er than the wavelength of the carrier wave k. This is a necessary condition for the use of the
perturbation expansion method. However, in the real application the perturbation expansion
method can be approximately used as long as the zonal scale of the envelope amplitude is
larger than the space scale of the carrier wave,

When —0 (it corresponds to linear wave), (20) reduces to the linear Rossby wave in the
form

Y, = —uyt+ 2M0\/%ysin(my)cos[k(x— C 0], (21)

where C , = w/ k.
When the carrier wave k in (20) is excluded, the streamfunction of the envelope
amplitude can be expressed as
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W, = — iyt 2M, / Liv sech| / % M,y (x— Cgt)lsin(my). (22)

For the parameters Ly= 5, F= 1.0, u= 0.7 and M ;= 0.8, the fields of ¥ ,, ¥, and ¢,
at 55°N are depicted in Fig. 1.

It can be found from Fig, 1a that the envelope amplitude possesses an isolated structure
of the sech—shape., Through the comparison with Fig.1b, we note that the zonal scale of the
envelope amplitude is larger than that of the carrier wave k. This shows that the perturbation
expansion carried out in the present paper is crudely acceptable. On the other hand, for a
linear wave its flow pattern has a wavy structure (Fig. 1b). But for envelope Rossby soliton
the wavy structure almost disappears due to the decay of sech—shape in the zonal direction
(Fig. 1c). In particular, in higher latitude regions, this character is more remarkable because
of 3/ (24) becoming large (figures omitted). This is why local dipole blocking can be easily
observed in high latitudes, If & is large, for example, for zonal wavenumber 4 (k=1.09), the ¥
field of the envelope Rossby soliton for zonal wavenumber 4 has a strong wavy structure, but
it doesn’t belong to blocking flow pattern (figures omitted). In addition, we note that Fig, lc
at day 0 is also similar to the equivalent modons and KdV—type soliton solutions obtained by
McWilliams (1980) and Malanotte—Rizzoli and Malguzzi (1987), respectively. Different point
is that both the modons and KdV—type soliton are nondispersive, but the envelope soliton
studied here is dispersive due to Cg— C , # 0. Although the dispersiveness of the free enve-
lope Rossby soliton system cannot be regarded as an advantage against the KdV soliton, it
just reflects such a fact that when the external forcing such as synoptic—scale eddies and so on
are excluded, no blocking flow can be maintained. As demonstrated by a number of numeri-
cal experiments, blocking system cannot be established if the external forcing is excluded, This
sufficiently shows that blocking system originates from the combined role of external forcing
and nonlinearity, As pointed out by the author hereafter, the dispersive envelope soliton
block may become weak dispersion even non—dispersion system by adding the forcing of
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Fig. 1. Structures of yr ,. ¢, and y, for free planetary—scale dipole envelope Rossby soliton at
55°N for M= 0.8: (a) ¢, field; (b)y, field: (c) ¥, field. Contour interval 0.3.
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synoptic—scale eddies during the amplifying of envelope amplitude. In other words, the onset
of the dipole block is a transfer of an amplified envelope Rossby soliton from dispersion to
weak dispersion even non—dispersion. This process can at least explain how the
synoptic—scale waves reinforce and maintain the dipole block. At the same time, one can
know how the synoptic—scale waves are modulated by the dipole block. Unfortunately, pre-
vious theoretical studies cannot describe the interaction between planetary— and
synoptic—scale waves during the life cycle of blocking. In the next section, based on our theo-
retical model we will present the behaviors of planetary— and synoptic—scale waves during the
life cycle of blocking.

4. The numerical results and the behaviors of planetary— and synoptic—scale waves dur-
ing the life cycle of blocking

In vsing the PIST method of the soliton perturbation theory, the forcing term in (18) is
usually regarded as a perturbation of the formal NLS equation, The general form of the
soliton solution with parameters depending on the slowly varying time is assumed to be of the
form (Hasegawa and Kodama 1995)

BE.T)= n(Tsech{ n(TN{— Zo(Texp{ — ix(TNL— Zo(T)+ i0(T)). (23)

where (T, k(T'), Z(T') and 0(T) are the envelope amplitude, frequency, group velocity and
phase of the soliton.

Nakamura and Wallace (1990, 1993) analyzed changes in the amplitude of
synoptic—scale baroclinic waves in the composite maps for a number of cases of blocking on-
set, and found that the local intensity of these synoptic—scale waves should be expressed in
terms of an " envelope function” | a measure of the time—averaged temporal variance associ-
ated with the waves. Based on this fact, without loss of generality /’, may be assumed to be of
the form

fo= a’gexpl— y(X+ ¢b)’], (24)

where a’y is the amplitude of the localized synoptic—scale waves, 7> 0 and b denotes the po-
sition of the localized eddy forcing. Here (24) is designed to imitate the high—frequency
synoptic—scale waves over the Atlantic storm track, upstream of vortex pair block
(Holopainen and Fortelius, 1987), The choice of #>0 means that the localized synoptic—scale
waves are located upstream of a splitting jetstream (high—over—low dipole) described by a
dipole envelope Rossby soliton, The latter discussion is based on this consideration,

Z, (W2
€

If one defines the new variables sn(ezt)= ‘/FM(I), Z()= cexl(et )= K1),

and 0(s” )= P(r), in terms of the PIST method the following soliton parameter equations can
be obtained as

%= G / % Magf F(x’,1)sech(@)sin(®)dx, (25)

aK_ _ G——O=Ma3f

T NEY) : F(x’ r)sech@ ) tanh(® ) cos(®)dx’, , (26)

— &
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(2—}2: — KN2A+ / 3 GaOMJ F(x',1)x'sech@ )sin(®)dx’, 27
P K*-oM* K dz | [s .. o
I > YT 2;vGMaO F(x J1)sech@)cos(®)1— # tanh@) ]l ¥
(28)
where F(x’,t)= exp[— 2“,’82()(/"“ Cgt+ Z+ »)Y]. # = \/;A Mx’ ay=cea’y, = e(x
—Cgt), X=¢ex, T= ¢t and O/, 1)= (k— 2Ak)(x'+ Cgt+ Z)+ (v, — 0, — w)}— %x’
+ P.

The streamfunction of the amplified planetary—scale dipole soliton during the interaction
with the localized synoptic—scale waves can be easily expressed as
Y= —uy+ /—2— M(t)sech{/% M@)x— Cgt— Z@))} %

exp{i{kx— wt— —ﬁ-l[ Cgt— Z(O+ P@)}Isinmy)+ 29, + cc. (29)

\1

When the feedback of the deformed planetary—scale dipole soliton on the localized
synoptic—scale waves is considered, the streamfunction of the deformed synoptic—scale waves
can be obtained as

Y= 2a,expl— y&* (x+ b)Y’ Kcos(k, x— o, 1)~ pcos(k,x— wzt)]sin(”—ly)

m Q / ag M@expl— & (x+ b) ]sech{/z) M@Ix— Cgt— Z@®)}} X

ﬁ_’) [x— Cgi— ZWI+ POHp,sinat 1)+ rysin(Ey)]

+ %zQz\/ij a,pM@expl— ye* (x+ b)z]sech{/% M@)x— Cgt— Z(@D)]} X

cos{(k, + k)x— (v,

5_5;—) [x— Cgt— Z(O}+ P(t)}[l)zsi“(%y)+ '”Zsm(%y)]

+ %Ql \/L_zv— aopM(expl= y¢* (x+ b)’ Jsechi

cos{(k, + k)x— (v,

1 M(t)[v— Cgt— Z(1)]} %

K(t), _ v ) m.
\122[ Cgt— Z()]— P@)} [slsm( "N+ h, sm( )

%sz/Liy a,pM(t)expl— vel (x+ b)? ]sech{/% M@)x— Cgt— Z@}} %

K@)
\/ 2

Because the planetary—scale dipole envelope Rossby soliton possesses a vortex pair block
structure, Eqs.(25)—(28) actually describe the deformation of a planetary—scale vortex pair
block (dipole envelope Rossby soliton) caused by localized synoptic—scale waves. If the solu-
tions of these equations can be derived, one can explore how the synoptic—scale waves rein-
force and maintain vortex pair block. In general, the analytical solutions of Eqs.(25)—(28) are
impossible. But, if the initial data are prescribed, their numerical solutions of these parameter
equations can be obtained by the fourth—order Rung—Kutta method. The parameters

cos{(k, — K)x— (0, — o)+

cos{ (k, — k)x— (w,

[x— Cgt— Z()]— P(t)l[szsm( L)+ 112s1n( L) (30)
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Ly=5,F=1.0,u= 0.7, n= 10, Ak= 0.75k,, a,= 0.15,7= 0.4, p=1.0and £=024 are
chosen in the present paper. Because dipole block usually occurs at the end of the storm track
(the maxima of the high—frequency eddy energy) (Holopainen and Fortelius, 1987), we may

take »=2.87. For this case, the localized synoptic—scale waves are located% upstream of the

weak, incipient vortex pair block represented by a dipole envelope Rossby soliton at x=0.0.
According to (29), we can define Cgm= Cg+ dZ / dt and Cpm= [w— (dP / dt)]/ k as the
group velocity and phase speed of the forced planetary—scale envelope soliton, respectively.
Furthermore, Cgp= Cgm— Cpm is defined as a measure of non—dispersion. If Cgp is zero,
then the system becomes non—dispersive. But, if Cgp is nonzero, this system is dispersive.
Based on this parameter, we can know the role of synoptic—scale waves in forcing dipole
block.

Figure 2 shows the numerical solutions of M(t), K(t), Z(), Cgm(r), Cpm(t) and

1.20 5 0.10
1.004
0.80 3

M3
0.60

0.403

020 "'fo"zd”'z(a) 1580 7o =015 ~575 3(0 32 E Po
a

days b) days

(d) days

07102 33T 48T 83" 8d 70
(e) days (£ days

Fig. 2. The numerical solutions of the parameter equations (21)—(24) for the soliton parameters
M), K(t), Z(t), Cgm, Cp and Cmp for the initial data M(0)= 0.55, K(0)= 0, Z(0)= 0, and
P(0)= 0,
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Cgp(t) for parameter equations (25)—(28) when the initial data M{0)= 0.55, K(0)= 0, Z(0)
= 0 and P(0)= 0 are chosen.

It can be found from Fig. 2 that when the localized synoptic—scale waves propagate
downstream and interact with the planetary—scale envelope Rossby soliton, this
planetary—scale dipole soliton can be deformed. In this process, for a, = 0.15 the soliton
amplitude M(r) increases from 0.55 at day 0 to 0.93 at day 9, and then it decreases from 0.93
to 0.52 at day 20. This means that under the near—resonant forcing of synoptic—scale waves
upstream, the planetary—scale dipole envelope soliton can be transferred from a “ high—index”
state into a “ low—index” state. At the same time, we note that the soliton wavenumber K(¢)
remains positive before 15 days so that the zonal wavelength of the planetary—scale dipole en-
velope soliton becomes longer during this period. After day 15, the zonal wavelength of the
planetary—scale soliton becomes shorter. On the other hand, we find that both the soliton
group velocity and the absolute value of the soliton phase speed decrease so that Cgp becomes
small even zero. In this case, the soliton system becomes weak dispersion even non—dispersion
(Cgp =0) as the planetary—scale dipole envelope soliton is amplified due to the near—resonant
forcing of upstream synoptic—scale waves. This can, to some extent, explain why the
synoptic—scale waves upstream can reinforce and maintain dipole block. Consequently, we
can infer that when the planetary—scale dipole soliton (incipient block) interacts with the
synoptic—scale waves upstream, it can be amplified into dipole block and maintained by these
waves, A similar conclusion can be obtained if one chooses other parameters (figures
omitted). In contrast, when p< 0, the synoptic—scale eddies given in (7) will lead to the decay
of incipient dipole block. Only when the synoptic—scale waves themselves have a moderate
parameter match, they can reinforce and maintain planetary—scale dipole anomaly flow,
Colucci (1985) suggested that blocking might be understood as a response of the
planetary—scale waves to synoptic—scale perturbations, which act as sources of energy and
vorticity for the incipient block. Such a process can be explained 1n terms of the results ob-
tained from Fig.2. On the other hand, because the second—order synoptic— scale flow ¢/,
contains the planetary—scale dipole soliton component ¥, the localized synoptic—scale waves
Y’ can be deformed when the planetary—scale dipole soliton is deformed by the localized
synoptic—scale waves. In order to see the role of localized synoptic—scale waves in the onset,
maintenance and decay of vortex pair block, the streamfunction fields of both deformed plan-
etary—scale dipole soliton and synoptic—scale waves will be plotted.

Under the same parameter conditions as in Fig.2 the streamfunction fields of the planet-
ary-scale dipole soliton y and the synoptic—scale eddies ¢’ and the total streamfunction field
(W = ¥+ ') are described in turn in Figs. 3, 4 and 5.

Fig.3 shows the streamfunction field, i, of the planetary—scale dipole envelope Rossby
soliton without including synoptic—scale waves, while Fig.4 presents the instantaneous con-
tour plots of the localized synoptic—scale eddies ('~ g’ W+ g2 '), It is obvious to see
that at day O this planetary—scale envelope soliton possesses a weak dipole, which can be con-
sidered as an incipient block or a zonal flow (Colucci, 1985: Vautard et al., 1988a), but the in-
cipient synoptic—scale waves are located upstream of the weak, incipient dipole block at x=0.
The flow pattern of the synoptic—scale waves is in good agreement with the synoptic—scale
eddies during the zonal flow observed by Vautard and Legras (1988b, their Fig.9a). When
these synoptic—scale waves propagate eastward and encounter the incipient, weak dipole
soliton existed downstream, a strong near—resonant interaction take places, This interaction
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Fig. 3. Time sequence of the instantaneous field ¢ of planetary—scale dipole envelope Rossby
soliton interacting with the localized synoptic—scale eddies at x=-2.87 for the same parameters

and initial data as in Fig.2. Contour interval 0.3

will lead to the deformation of both planetary—scale dipole soliton and synoptic—scale waves,
Although previous theories can indicate the role of synoptic—scale waves in forcing dipole
blocking (Haines and Marshall, 1987; Malanotte et al., 1987 and Malguzzi, 1993), but cannot
provide a clear physical picture of how both planetary—scale wave and synoptic—scale waves
interact during the life cycle of blocking. In other words, the problem how the planetary—scale
blocking wave is deformed during the passage of synoptic—scale waves upstream is not solved
yet. Using our theoretical model presented here, this problem can be solved completely. It is
easily found from Figs.3 and 4 that through the near—resonant forcing of synoptic—scale
waves, the planetary—scale envelope soliton can be amplified, while the synoptic—scale waves
themselves will undergo a strong deformation due to the feedback of amplified soliton block.
For example, at day 3 the planetary—scale soliton is slightly intensified, but at days 6 and 9
the intensification of the soliton block is more remarkable. Afterwards, this soliton block be-
gins to weaken. In this process, a noteworthy character is that during the establishment of
dipole block the synoptic—scale waves upstream are enhanced and split into two branches:
one spreading northeastward along the western flank of the developing anticyclone, and the
other southeastward around the cyclonic low—frequency circulation anomaly developing to
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Fig. 4. The instantaneous chart of the streamfunction contours for the localized synoptic—scale ed-
dies including the feedback of the planetary—scale dipole envelope Rossby soliton at 55°N for the

same parameters and initial data as in Fig,2. Contour interval 0.3.

the south of the block, This enhancement is very remarkable before 9 days. The synoptic be-
havior of synoptic—scale waves during the blocking onset being very similar to the result
found by Nakamura and Wallace (1990), who observed that the enhancement of
synoptic—scale waves tends to occur about five days before the blocking pattern is fully estab-
lished. Thus, the enhancement and splitting of synoptic—scale waves completely originate
from the feedback of amplified dipole block. To some extent, this result may explain why the
Atlantic storm track (the maxima of the synoptic—scale eddy energy) is split into two
branches when high—frequency (synoptic—scale) eddies are steered around the block
(Holopainen and Fortelius, 1987; Vautard et al., 1988a_b). Although diagnostic studies had
indicated that synoptic—scale waves could undergo deformation as they approached a
blocked area (Shutts, 1983; Holopainen and Fortelius, 1987), how the planetary—scale block-
ing wave was deformed during the passage of synoptic—scale waves being not understood.
However, we can find from Fig.2 that during the passage of upstream synoptic—scale waves,
the planetary—scale soliton block downstream can be amplified, and transferred from a
dispersion system to a weak dispersion even non—dispersion system, This result is new, which
describes how the soliton block is deformed during its interaction with synoptic—scale waves,
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Therefore, the results obtained here can explain why cyclogenesis is particularly intense and
planetary—scale waves undergo drastic changes during the onset of blockings during the life
cycle of blocking (Nakamura and Wallace, 1990).

Fig. 5 shows sequences of contour plots of the total streamfunction field .. It is found
from this figure that at day 0, a weak block is located at x=0, which is regarded as an incipi-
ent block (or called zonal flow) (Colucci 1985:Vautard and Legras 1988b), and both
small—scale low pressure troughs and high pressure ridges prevail upstream of the weak incip-
ient block. When the small—scale systems (synoptic—scale waves) propagate eastward and
interact with the weak incipient block downstream, the small-scale low pressure trough and
high pressure ridge are amplified. In this process, the east—west scale of the small—scale
vortices seems to undergo a compression. At the same time, the planetary—scale anticyclonic
vorticity induced by synoptic—scale waves goes northward, while the planetary cyclonic
vorticity goes southward. This process can reinforce the incipient soliton block downstream.
This behaviour can be also seen from Fig.6, which describes the fields of F,=

— JO' . VY'))p. At day 3 a closed vortex pair block is observed at x=0 . At the same
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time, small—scale trough and ridge upstream of the vortex pair block are further intensified.
At day 6, a very strong vortex pair block occurs because the negative and the positive planeta-
ry—scale vorticities induced by the synoptic—scale waves further enter the anticyclonic and
cyclonic regions of the vortex pair block. At day 9, this dipole block becomes more apparent,
Afterwards, the dipole block will decay because the field F, travels eastward and shifts from
the dipole block and the synoptic—scale waves also become weak (Fig. 4 at day 12). This re-
sult reflects in part that the synoptic—scale waves upstream will become weak as the dipole
block becomes weak. It may be associated with such a fact that the feedback of dipole block
flow on the synoptic—scale waves becomes weak during the decay of vortex pair block. In
contrast, during the onset of dipole block the enhancement of synoptic—scale waves is due to
the feedback of enhanced dipole block. Thus, both vortex pair block and synoptic—scale
waves possess a symbiotic relation (Cai and Mak, 1990; Nakamura and Wallace, 1990). Pre-
vious theoretical models cannot describe such a relation, It is clear to find from Fig.5 that
there appear to be several isolated cyclonic or anticyclonic vortices coexisting within the
blocking region, This figure is very similar to an observational case found first by Berggren et
al. (1949). Very unfortunately, previous theoretical model cannot explain such a structure.
During the period of blocking (from day 6 to day 12), d<gq,> /d<y,> and
d< q;> /d<y,> areplotted in Fig. 7, where < ¢, > = V2 <yYy,>+ pr, < g;>
=vi< Yr>+ By, <y,>.,and < ;> aretime averaging during the period from day 6
to day 12,

Strictly speaking, < g, > and <, > does not have an exact linear relationship during
the period of blocking in which the synoptic—scale waves are filtered out. But, approximately,
it can be regarded that < ¢, > and <, > have a linear relationship. However, when the
synoptic—scale eddies are included in the blocking region. the linear relationship between
< ¢gr> and <, > becomes more impossible. This shows that the synoptic—scale waves
can cause the breakdown of the linear relationship between time—averaged potential vorticity
and streamfunction (Butchart et al., 1989; Mu et al., 1999).

Although synoptic—scale waves here are designed to be very simple, our nonlinear analyt-
ical model proposed here can produce the main features of the interaction between the
synoptic—scale waves and planetary—scale waves during the life cycle of blocking. It should be
pointed out that if the amplitude of the initial planetary—scale envelope soliton (incipient
block) is chosen to be too small or the synoptic—scale waves are located downstream of the
incipient soliton block, this incipient soliton block cannot be amplified into a blocking system
(figures omitted). This point has been confirmed. As suggested by Colucci (1987), the planeta-
ry—scale waves might require at least a critical amplitude before the blocking is established.
During the onset of blocking there appears to be a positive feedback between the
synoptic—scale waves and planetary—scale waves because of higher incipient planetary—scale
wave amplitude even though the planetary—scale response to this feedback depends on the lo-
cation of the synoptic—scale waves relative to the planetary—scale waves. However, such a
feedback doesn’t occur during the nonblocking period, perhaps it originates from low incipi-
ent planetary wave amplitude. On the other hand, we can find that the parameter match of
synoptic—scale waves themselves seems to strongly dominate the synoptic—planetary scale
wave interaction. For example, when p< 0, the synoptic—scale waves do not favor the ampli-
fication of dipole block even if the incipient planetary—scale wave has a large amplitude (fig-
ures omitted). In other words, only under a moderate condition the interaction between plan-
etary— and synoptic— scale waves can reinforce and maintain dipole block.
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5. Conclusion and discussions

In this paper, we have proposed a forced envelope soliton model to describe the
interaction between the planetary— and synoptic—scale waves in weak background westerly
wind during the life cycle of blocking. It can be shown that for a moderate parameter match
of synoptic—scale eddies themselves when these eddies impinge upon the weak dipole block
from the west, the weak block can be amplified into a very strong vortex pair block and the
eddies are split into two branches around the block, In addition, we can see that the forcing of
localized synoptic—scale eddies is able to make the vortex pair flow (dipole envelope Rossby
soliton here} weak dispersive even nondispersive, This may explain the establishment and
maintenance of vortex pair blocks by localized synoptic—scale eddies. On the other hand, it is
also clear that when the vortex pair block weakens considerably, the deformation of the
synoptic—scale eddies does also weaken, indicating that both of them have a symbiotic rela-
tion, The main conclusions are:

(1) The forcing of the synoptic—scale eddies is found to increase the amplitude of the vor-
tex pair structure described by an envelope soliton and decrease its group velocity and phase
speed, that is, the dispersive vortex pair system may become weak dispersive even
nondispersive by adding the forcing of synoptic—scale eddies. This can explain why the
synoptic—scale eddies can reinforce and maintain dipole blocking. The onset and maintenance
of vortex pair block by synoptic—scale eddies are of transfer process from dispersive system to
weak dispersive even nondispersive system, During the mature period of blocking, the
time—averaged blocking structure can be approximately considered as a nondispersive modon
solution (McWilliams, 1980), but during the onset and decay period of blocking it cannot be
regarded as a nondispersive modon solution. Consequently, the forced envelope Rossby
soliton model proposed here seems to be more reasonable for blocking events than the KdV
soliton and modon models.

{2) The result about the interaction between vortex pair block and synoptic—scale eddies
obtained in the forced envelope soliton model is found to be very similar to the life cycle of
blocking observed by Berggren et al. (1949). This shows from another aspect that the enve-
lope Rossby soliton is reasonable for blocking events,

On the other hand, it should be pointed out that although the leading—order part (the
first—order synoptic—scale flow) of the synoptic—scale eddies is designed to consist of a pair of
sideband perturbations with the time scale less than one week and is assumed to be placed in
the upstream of the dipole flow, the second—order synoptic—scale flow can be induced by the
interaction between the first—order synoptic—scale flow and the dipole block flow, In this
case, the synoptic—scale eddies (the sum of the first—and second—order synoptic—scale flows)
are found to be deformed when interacting with the dipole flow. In spite of the simplicity, the
result obtained in our model compares rather well with observations in many respects. Even
so, the model of higher vertical resolution and a more realistic mean wind profile should be
considered if better agreement is expected to obtain. Comparing with the previous theoretical
works (Pierrehumbert and Malguzzi, 1984; Haines and Marshall, 1987), our model seems to
be another candidate to investigate the interaction between the traveling weather systems and
planetary waves during the life cycle of blocking (see the observational evidence given by
Berggren et al. 1949, their Figs. 14—18 or Fig.26). Another characteristic of this model is the
absence of large—scale topography. This omission is acceptable in studying the dynamics of
blocking over the Atlantic. Although our model is simple, our approach provides a basis for
investigating the interaction between synoptic—scale eddies and blocking flow in the mid—high
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latitudes. The role of baroclinic synoptic—scale eddies in forcing blocking circulation has been
investigated in Luo (2000).

In addition, the comparison with observed data should be made. The study will be pres-
ented in another paper.

Appendix
The coefficients Q,, p,. r;. s; and &, (i= 1,2) in (14) are defined by
k— 2k,
Pi= 9m? |
B+ Filk, + kl— [utk, + K)— (o, + o)k, + k) + =t A
k+ 2k,
r, = 2 .
(B+ Fu)k, + k1= [ulk, + k)= (o, + o)k, + k)* + ”jT + F]
k+ 2k,
§; = 9 2 -
B+ Flk,— k1= [ulk, — k)— (0, — o)k, — k)’ + ’;’ + F]
k— 2k,
h,= 2 .
(B+ Filk, = k]= [k, = k)= (@, = oMk, = k)° + “= + F]
and Q,=k’+ m’— (ki + %;) (i=1.2).
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